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Abstract

The onset of the nonlinear behavior of band profiles in elution chromatography is investigated by studying the
profile of the shock layer caused by a finite mass transfer resistance in the absence of axial dispersion for a single
component. A closed-form analytical expression of the shock layer is obtained for a parabolic isotherm. This
solution depends on a dimensionless number which may be used to characterize the degree of nonlinear behavior of
the band profiles and to select the mode! most appropriate for their accurate description. The profiles resulting
from this solution are compared with those obtained by numerical calculations under different conditions to assess
the influence of the assumptions made. The differences observed illustrate the sensitivity of the elution profiles to

small changes in the equilibrium isotherm.

1. Introduction

The single-component elution problem in non-
linear elution chromatography has been abun-
dantly studied {1]. The ideal model predicts the
band profile for any isotherm by supplying the
equations for the diffuse boundary [1-3], the
position of the concentration discontinuity [1,4],
and when the isotherm has an inflection point,
the various features of the more complex profile
[5,6]. This model, however, assumes the column
efficiency to be infinite. In practice, this is not
so. It has been shown that, provided the column
efficiency exceeds a few thousands plates, the
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profile of the diffuse boundary does not differ
significantly from the profile derived from the
ideal model [1,7-9], except near the two ends of
this profile. This result validates the classical
ECP (elution by characteristic points) method of
isotherm determinations {10,11], with proper
qualifications [1,7-9]. Nevertheless, a vexing
problem remains for the theoreticians. In the
general elution case, the shock layer which
replaces the discontinuity of the ideal model
cannot be properly accounted for by an ana-
Iytical, closed-form equation.

This shock layer arises from the smoothing
effects due to axial dispersion and to the resist-
ance to mass transfer across the column. These
phenomena prevent the formation of a concen-
tration discontinuity or shock, which in their
absence would result from a nonlinear isotherm.
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Instead, the dynamic competition between these
dispersive phenomena and the self-sharpening
influence of a nonlinear isotherm causes the
formation of a shock layer with a finite thickness.
The resulting band profile can be accounted for
properly by using either the equilibrium-disper-
sive model or a kinetic model [1]. The former
model lumps the effect of axial dispersion and
mass transfer kinetics into a single apparent axial
dispersion term. The latter offers the possibility
to handle separately axial dispersion and mass
transfer kinetics. The breakthrough profiles in
frontal chromatography and the profiles of the
band boundaries in the isotachic train of dis-
placement chromatography have been calculated
using these models [1,12-17], in the displace-
ment case only for a Langmuir isotherm. Thus.
the influence of axial dispersion and the mass
transfer resistance can be studied directly, ex-
perimental results can be compared in detail to
the results of computer calculations, and op-
timum conditions may be predicted accurately
[12-17].

This success is possible, however, because in
these two cases, breakthrough curves and pro-
files of zones of the isotachic train, constant
states arise both before and after the profile. A
constant pattern takes place between these con-
stant states and the concentration signal tends
rapidly towards a steady-state profile which
propagates unchanged [1,12-14]. In elution
chromatography, by contrast, there is no such
constant pattern. The height of the elution band
decreases constantly during its migration. Ac-
cordingly, the shock propagation velocity
changes. It decreases continuously in the case of
a convex-upward isotherm. For this reason, it is
not possible to derive an analytical solution of
the problem in the general case. However, an
exact solution of the elution band profile has
been derived by Thomas [18] in the case of a
Langmuir isotherm, Langmuir kinetics of ad-
sorption/desorption, and no axial dispersion.
The solution has been reduced to an analytical
equation by Goldstein [19] in the case of a
rectangular injection and simplified by Wade et
al. [20] in the case of a Dirac pulse injection.
This would permit the study of the influence of

the mass transfer kinetics on the shock layer
profile and on its thickness if the solutions, which
include first-order modified Bessel functions of
the first kind, were not so complicated and
difficult to use. An investigation of the possible
use of this solution to derive an analytical ex-
pression for the thickness of the shock layer is in
progress [21].

It has been long known that an approximate
analytical solution of the equilibrium-dispersive
model can be derived for weakly nonlinear
systems, using a simplified Langmuir isotherm
(parabolic isotherm) [22-25]. As the equation
obtained is the approximate solution [1,26] of a
simplified model, it cannot be used to study the
shock layer thickness. However, we have found
that, using a variant of these old, conventional
models, it is easy to derive a simple equation for
the shock layer profile and its thickness without
introducing any mathematical approximations.
The model itself includes two restrictive, physical
conditions, a parabolic isotherm and a minimum
column efficiency. This solution permits the
study of the influence of the mass transfer
kinetics on the formation, profile, and thickness
of the shock layer during the onset of column
overloading. The results illustrate the passage
from linear to nonlinear behavior.

2. Theoretical

Assuming a parabolic isotherm, which is valid
in the low concentration range, Houghton [22]
and Haarhoff and van der Linde [23] have
derived solutions of the equilibrium-dispersive
model, in which constant equilibrium between
the two phases of the system is postulated, and
the band broadening effect of a finite mass
transfer kinetics is accounted for by lumping it
into an apparent dispersion coefficient which
replaces axial dispersion [1]. The derivation of
the concentration profile from the system of
equations of the model cannot be done without
introducing a simplifying assumption [1,22,23].
In the Houghton solution [22], this assumption
modifies the mass balance equation in such a way
that the mass conservation is destroyed and the
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area of the resulting profile depends on the
sample size. Other assumptions do not have this
inconvenience [23,26].

We show that a rigorous solution can be
obtained simply for a model using the parabolic
isotherm, neglecting axial dispersion and assum-
ing a finite rate of mass transfer. This kinetic
model uses the solid-film linear driving force
model. Thus, it is different from the Thomas
model [18] which uses the Langmuir Kinetics.

2.1. System of equations

Since we neglect axial dispersion due to molec-
ular diffusion and eddy diffusion, the mass
balance equation is the same as in the ideal
model [1]

aC aq oC
+F —8;—0 (1)

at ar

where C and g are the liquid and solid phase
concentrations of the component, respectively, ¢
and z are the time and the position in the
column, respectively, F is the phase ratio [F =
(1 — €)/e, where ¢ is total column porosity], and
u is the mobile phase flow velocity.

The mass transfer between the liquid phase
and the solid phase is characterized by a simple
lumped kinetic equation. We use here the solid-
film linear driving force model, written as follows

(11,

L —k(g*—q) (2)

where k is the mass transfer coefficient and g* is
the equilibrium concentration given by the iso-
therm equation. Most theoretical studies done in
chromatography assume a Langmuir isotherm
model

. aC
9 “1+%bC

where a and b are numerical parameters. When
bC is negligible, this model reduces to a linear
isotherm. When bC is small but no longer
negligible, the model can be approximated by a
parabolic or second-order Taylor expansion

g* =aC(1 - bC) (3b)

(3a)

This situation corresponds to the onset of col-
umn overloading, when the effect of a nonlinear
isotherm begins to influence the band profile.
The similarities and differences between the
three isotherms, g¢* =aC and Eqs. 3a and 3b,
are illustrated in Fig. 1 showing plots of g*
versus bC. The difference between the Langmuir
and the linear isotherms is 1% for bC =0.01.
The difference between the Langmuir and the
parabolic isotherm is 1% for bC =0.10. The
parabolic isotherm is meaningless for bC > 0.5
because then g* decreases with increasing C.

The initial and boundary conditions of the
problem corresponding to an empty column and
to the injection of a very narrow rectangular
pulse of feed (Dirac pulse), respectively. These
conditions are

C(x,0)=0 0<:z (4a)
C0.n=C, 0<r=y, (4b)
C0,0)=0 r,<t (4¢0)

where C, is the component concentration in the
injected sample and ¢, is the injection duration
assumed to be very short.
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Fig. 1. Comparison of the three equilibrium isotherms:
(--~-—-) linear isotherm, g*=aC; ( ) parabolic iso-

therm, g*=aC(1 —bC); (----- ) Langmuir isotherm, g* =
aC/(1 + bC). Plot of g* versus bC. a =12, b =0.024 ml/mg.




4 B. Linetal. | J. Chromatogr. A 708 (1995) 1-12

2.2. Derivation of the analytical solution of the
model

In most practical cases, the column efficiency
achieved in preparative chromatography is large,
l.e., it largely exceeds a hundred theoretical
plates. In such cases, the mass transfer coeffi-
cient, k, is relatively large and the deviation of
the stationary phase concentration from the
equilibrium concentration remains small. Making
this assumption, we can rearrange Eq. 2 as
follows

1 aq 1 ag*
=g —— 1 __ x_
19 "% 0T Tk w (52)

For moderate concentrations (i.e., when bC is
small), and assuming the isotherm in Eq. 3b, we
have

9~q9" Lo (5b)
Combination of Egs. 1 and 5b gives
3C 1+ Fa(1-26C) aC _ Fa 9°C

9z u at  uk (6)
Using the coordinate transform
1+ Fa ( u )
"= 2Fab \* 1+ Fa t) (7)
Eq. 6 can be rewritten as
€_LC_p oC
9z or or- (8)

with D, = u/(4Fab’k). Eq. 8 is Burger’s equa-
tion. Comparing it to the similar equation de-
rived by Houghton [22] shows that D, is a
diffusion coefficient in the 7 domain.

After the coordinate transform (Eq. 7), the
initial and boundary conditions become

C(z,0)=0 0<z (9a)

C(0,7)=¢C, le:btp<1-<0 (9b)
u

C0,7)=0 r<- > Fab v (9¢)

The solution of the classical Burger’s equation
for the classical Dirac boundary condition is

exp(—w’)

25 -w’
Clz.r) = \/; coth(R,2) + eri(w) (10

with

T T

= = 10b

V2Sz/R, 2VD,z (106)
uCyt

=2 Fab (109)
S

R, =55 = Cot bk (10d)

2D,

A solution for the boundary conditions of a
wide injection (Eqs. 9b and 9¢) could be easily
derived following the same procedure as de-
scribed by Haarhoff and van der Linde [23]. The
following discussion is thus limited to Eq. 10.

No mathematical simplifications have been
made to derive a solution of Eq. 8 so Eq. 10 is
an exact solution of Eq. 8. It is not an exact
solution of the system of equations 1, 2, and 3b,
with the initial and boundary conditions in Egs.
d4a—c only because we have assumed that k is
large. This restriction does not affect the mass
conservation properties of Eq. 1, however, and
the profile given in Eq. 10 does conserve the
mass. Its area is proportional to the sample size.

The solution obtained is very similar to the
profile derived by Haarhoof and van der Linde
[23]. The equations giving the band profiles as
supplied by the two models can be identified
simply, providing a relationship of equivalence
between the apparent dispersion coefficient of an
equilibrium-dispersive model and the rate coeffi-
cient of an equilibrium-transport model giving
the same band profile. This relationship is equiv-
alent to the classical expression of the contribu-
tion of the finite rate of mass transfer to the
column plate height derived by Van Deemter
[27]:

ki, u?

T (1+k;) D,

(11)

Thus, while the influence on the band profile of
the mass transfer resistance can be accounted for
correctly by a contribution to the apparent
dispersion coefficient of an equilibrium-disper-
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sive model, the axial dispersion can be accounted
for by a suitable contribution to the rate coeffi-
cient of an equilibrium-transport model. This
result is another illustration of the equivalence of
these models at moderate or high column ef-
ficiency [1,26].

2.3. Derivation of the shock layer thickness

Obviously, when k becomes infinite, there is
instantaneous equilibrium between the two
phases and the model becomes identical to the
ideal model. When R,—x=, Eq. 10 can be
rewritten as follows

Clz.r) =7 0<(,<1 (12a)
Cz,7)=0 ¢, <0, or t.>1 (12b)

where ¢, =7/V2Sz = w\/R, (Eq. 10b).

This solution is equivalent to the solution of
the ideal model, when the concentration is small
and the second order terms are neglected. Eq. 12
shows that for any fixed z (e.g. at the column
outlet where z = L), the concentration jumps
from 0 to a maximum concentration given by

SETEs (13)

ro=1 zZ

Coux =7

z
and which is reached at the time corresponding
to t,=1 or 7=V2SL. Eq. 7 shows that this
corresponds to the time

L Cyt Fab
t=tRE'u—<l+Fa—2 T—> (14a)

We note that Fa =k, the retention factor at
infinite dilution, and that the sample size is n =
Cot F, = Cot,uS., where F, is the mobile phase
flow-rate and S_ is the cross-sectional area avail-
able to the liquid phase. The loading factor of
the Langmuir isotherm (Eq. 3a) is L,=n/
(S.LFq,) = (Cot u)/(LFq,), where g, is the satu-
ration capacity of the stationary phase, or a/b
(Eq. 3a) and S, is the cross-section area of the
column available to the liquid phase. Thus, Eq.
14a is equivalent to

te =ty + kigo(1—24/L)) (14b)

which is equivalent to the equation giving the
retention time of the concentration discontinuity
in the case of the ideal model for a Langmuir
isotherm [tp =1+ (tg o — #,)(1 — VL), [1.4]],
where (1—14/L,)* has been replaced by (1—
2\/ff), a simplification which is valid when L; is
small. Similarly, the concentration becomes 0
again when 7 =0, which corresponds (Eq. 7) to
t=(1+Fa)L/u=1ty(1+ky)=tg,, where 1, is
the retention time at infinite dilution. In the
interval between t; and fg ,, the concentration
decreases linearly with increasing time, from
C..x (Eq. 13) to 0. The equation can be re-
written by solving Eq. 7 for ¢

t=1,(1+ k(1 -2bC)) (15a)

This is the classical simplification of the equation
of the ideal model

kg )
t t0<1 + (15 bC)’ (15b)
for C small. This ideal profile is represented in
Fig. 2 for large value of k.

In practice, the mass transfer kinetics is not
infinitely fast but & is finite and the mass transfer
resistance makes the whole band profile more

0.2sf

02f
Soast
3

01F

0.051

% s e d
(+10)0

Fig. 2. Comparison of the band profiles obtained with the
ideal model and with the equilibrium-transport model dis-
cussed here. Parabolic isotherm, parameters as in text and in
Figs. 1 and 3. C;=10 mg/ml, ¢, =10s. Solid line: ideal
model profile, k = . Dashed line, & = 10.0 s~'. Chain-dotted

line, k =2.0s™". Dotted line, k=0.2s"".
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diffuse. The front shock at ¢, =1 is replaced by a
shock layer, the maximum concentration of the
band is less than the ideal value C,, = V2S/L,
and the rear diffuse boundary of the band is no
longer a straight line but a curved line which
tends toward a Gaussian curve for small values
of k. This effect is illustrated in Fig. 2.

When k, hence R,, is finite, the shock layer
can be studied using Eq. 10. When ¢_ is close to
unity, C may be approximated by

T 1
Z 1+2V 7R, exp[2R, (1, — 1)]

Eq. 16 gives the profile of the band between its
beginning (C =0 at £, >>1 or 7 >> V25z) and its
maximum (reached at 7, =1, Eq. 13), i.e., the
profile of the shock layer. As C must remain
finite, |2R,(t, —1)| also must be finite. Thus,
|t, — 1| is of the same order of magnitude as R, '
and the order of magnitude of the shock layer
thickness is O(R;').

The thickness of the shock layer can be de-
rived as the distance between the time of the
band beginning (¢, > 1) and the time of the band
maximum ¢, =1. The elution band profile does
not begin at any given time, however. Since we
are interested in the part of the profile where the
concentration is significantly different from 0, we
consider the shock layer as the part of the profile
front extending between the concentrations C
and C,, with 6 = C/C_,,,; 0 is chosen arbitrarily,
as most convenient for the problem studied (e.g.,
6 =0.05 [12,13]). Solving Eq. 16 gives

1 ( 1 1—9)
=2R, °8\7v=r, 6 ) (173

Clz,7)= (16)

At =1, ~ 1]

Replacing ¢, by its definition as a function of time
gives finally

1 1—0]

1
lad =T 108[2\/‘7;Lf5tk "

(17b)
where R, = L; Stk (see Eq. 10d and the defini-
tion of the loading factor L, corresponding to the
Langmuir isotherm associated with Eq. 3) and
St=kL/u is the Stanton number.

Eq. 17 shows that the thickness of the shock
layer is inversely proportional to the kinetic

coefficient, k, and to the square root of the
loading factor, if we neglect, as a first approxi-
mation, the dependence of the logarithmic term
on L.St. In frontal analysis and in the isotachic
train of displacement chromatography, the shock
layer is also proportional to the column HETP
[12-17].

2.4. Numerical calculations

Numerical calculations were performed when
needed using a classical finite difference method
for the integration of the system of equation of
the kinetic model, the Godunov or Forward-
Backward scheme (Ref. [1], Ch. X). This choice
is justified by the fact that Eq. 1 is an Euler
equation, including convection but no disper-
sion. Then, the numerical method gives a stable
solution. Its accuracy is only of the first order but
this inconvenience is compensated by the rapidi-
ty of the calculations. In order to eliminate the
band broadening and smoothing effects of nu-
merical dispersion the latter is cancelled by
choosing a value of 1.000001 for the Courant
number of the problem [1].

3. Comparison and discussion

In order to illustrate the theoretical results
obtained and to study the range of validity of the
results derived from the analytical solution of the
model (Egs. 10, 16, and 17), numerical calcula-
tions have been performed with a program
implementing the solution of the system of Egs.
1 to 4. Numerical calculations have also been
done for a similar model including a dispersive
term in Eq. 1. A comparison between the
analytical solution of the model and the numeri-
cal solutions obtained with either the parabolic
or the Langmuir isotherms is discussed later in
this section.

The values of the parameters used for the
numerical solutions discussed in these compari-
sons and shown in the figures are: phase ratio,
F=0.45; flow velocity, ©=0.19 cm/s; column
length, L =25 cm; Langmuir isotherm parame-



B. Lin et al. / J. Chromatogr. A 708 (1995) 1-12 7

ters, a = 12 and b = 0.024 ml/mg, hence k;,=5.4
and g, = a/b =500 mg/ml.

3.1. Effects of the injection concentration

Fig. 3 compares the analytical solution of the
simple, nondispersive model derived in the theo-

—
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Fig. 3. Comparison between the analytical (solid line) and
numerical (chain-dotted line} solutions of the model obtained
for different injection concentrations. Feed concentration,
C,=1, 05; 2, 2.0; 3, 10.0; 4, 20.0 mg/ml. In all cases,
1, =10 s; mass transfer coefficient, k =5.0 s L phase ratio,
F=0.45; flow velocity, u =0.19 cm/s; column length, L =25
cm; Langmuir isotherm parameters, @ =12 and b =0.024
ml/mg. The analytical solution is always obtained for the
parabolic isotherm g =aC(1 — bC). (a) The numerical solu-
tion is obtained with the parabolic isotherm. (b) The numeri-
cal solution is obtained with the corresponding Langmuir
isotherm.

retical section with the numerical solution of the
same model, using either a parabolic isotherm
(Fig. 3a) or a Langmuir isotherm (Fig. 3b), and
no axial dispersion term in either cases. This
comparison is illustrated for different injection
concentrations, C,, 0.5, 2.0, 10.0, and 20.0 mg/
ml. With ¢, = 10 s, this corresponds to values of
the loading factor, L,, equal to 0.0169%,
0.068%, 0.34%, and 0.68%, respectively, and
values of the parameter R, equal to 0.58, 2.31,
11.6, and 23.1, respectively. The value chosen
for the mass transfer kinetics coefficient is k =
5.0 s”! in all cases, hence a Stanton number,
St = Lk/u, equal to 657.

As expected, the analytical and numerical
solutions of the model are almost identical. The
slight differences which are observed between
the two profiles of each set are due to the small
amount of numerical axial dispersion which has
to be used in the calculation of the numerical
solutions in order to allow for the numerical
stability of the algorithm. This difference, hence
the inaccuracy of the numerical solution, be-
comes significant at small injection concentra-
tions. Both the analytical and numerical results
show clearly, however, that at low values of the
injection concentration, the chromatographic
system behaves linearly or nearly so and the
band profile is Gaussian. This is the case of the
first profile in Fig. 3a for which bC =0.012,
L,=0.0169%, and R, =0.58. By contrast, for
large values of C; as in the cases of the two
largest values used for the calculation of the
profiles in Fig. 3a, a sharp front or shock layer
appears on the front of the band profile. In this
case, the influence on the band profile of the
nonlinear behavior of the thermodynamics of the
phase equilibrium is obviously dominant. These
results suggest that when R, is larger than 2 the
column is overloaded and the band profile
skewed while when R, becomes smaller than
unity the influence of the curvature of the
isotherm becomes rapidly negligible and linear
behavior is observed.

A comparison of the profiles in Figs. 3a and 3b
shows that the same profiles are obtained with
the parabolic and the Langmuir isotherm for the
first two profiles (bC, < 0.05) and that only very
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small differences are seen around the band top
for the third profile (bC, =0.24). In the case of
the fourth profile, there is still a great similarity
between the two profiles, the Langmuir profile
having a slightly longer retention time and a
slightly larger height than the parabolic isotherm
profile, and having a curved upward diffuse rear
boundary while for the parabolic profile this part
of the profile is nearly a straight line down to low
concentrations where the influence of the mass
transfer kinetics becomes again significant. These
differences are explained by the larger amount
adsorber, g*, given by the Langmuir isotherm
for any solute concentration, as illustrated in Fig.
1.

4.2. Effects of the rate of the mass transfer
kinetics

The comparisons of the analytical and numeri-
cal solutions in Fig. 3 were done with different
values of the loading factor obtained by changing
either the injection concentration or the injec-
tion time at constant value of the rate constant of
mass transfer. The value chosen (k=35 s ')
corresponds to a contribution of the mass trans-
fer resistance to the column HETP equal to [1]
H =2kiu/(k(1+k})*)=0.01 cm. This gives to
the column an efficiency of 2500 theoretical
plates, a rather mediocre figure of merit. As
shown by Egs. 10, 16, and 17, the band profile
depends also on the mass transfer kinetics. Fig. 4
shows a comparison of the band profiles ob-
tained at constant loading factor (1, =10s, C, =
10 mg/ml, hence, L;=0.33%) for different
values of the rate coefficient of mass transfer
kinetics, k, between 0.5 and 20 s~'. As seen in
Fig. 4, there is an excellent agreement between
the analytical and numerical solutions for large
values of k. For small values, differences arise
because the assumption made in writing Eq. 5
(i.e., that k is large enough to permit replacing
dq/ot by ag*/at in Eq. 2) begins to falter. The
analytical solution is not valid for small values of
k.

For the value of the loading factor selected,
L;=0.33%, the behavior of the chromatograph-
ic system is strongly nonlinear at the largest
values of the mass transfer kinetics (k = 10 or 20

s '). However, there is a considerable erosion of
the shock at low values of the rate coefficient
and the shock layer becomes quite wide (Fig.
4a). A nearly Gaussian band profile is obtained
as in the linear case for k=0.5 57" (R, = 1.20).
Note, however, that for the rather low value of
k=2 s, corresponding to a column efficiency
of 1000 theoretical plates, an obvious self-shar-
pening effect appears on the front of the band
(R, =4.8). A similar smoothing phenomenon
has been reported in the case of the equilibrium-
dispersive model, in which case it depends on the

T T T
0.25F
0.2r

o
L0.15
a

0.05F

025+
0.2

o
L£0.15F
]

0.05F

L

2 3

5 6 ; 8
{t-10)10
Fig. 4. Comparison between the analytical (solid line) and
numerical (chain-dotted line) solutions of the model obtained
for different values of the rate coefficient of mass transfer
kinetics, £k =1, 0.5; 2, 2.0; 3, 10.0; 4, 20.0 s ', In all cases,
C,=10 mg/ml and t,=10 s. Thus, the loading factor is
constant. (a) The numerical solution is obtained with the
parabolic isotherm. (b) The numerical solution is obtained
with the Langmuir isotherm.
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importance of the apparent dispersion coefficient
[1]. Fig. 4 shows that the nonlinearity of the
chromatographic system is not only controlled by
the loading factor, but also by the mass transfer
kinetics.

At the end of the Theoretical section, the
thickness of the shock layer has been defined and
calculated. Applying Eq. 17 to the profiles in
Fig. 4a, corresponding to values of k of 0.5, 2,
10, and 20 s~ " gives for the shock layer thick-
ness, At, 151.2, 49.7, 12.7, and 6.9 s, respective-
ly. The values derived from the numerical solu-
tions are 95.4, 37.4, 9.2, and 555, respective-
ly. As explained above, the difference between
the two sets of values observed when the mass
transfer kinetics is slow is due to the approxi-
mation made in the derivation of Eqgs. 5 and 6.

Fig. 4b gives a similar comparison, using the
Langmuir isotherm for the calculation of numeri-
cal solutions. The results obtained are nearly the
same. Except when the mass transfer kinetics is
fast, the profiles are quite close. For still lower
values of the rate coefficient, the retention time
of the band would decrease and the phenomenon
of split peaks would eventually appear [1].

4.3. Effects of axial dispersion

The model discussed in the Theoretical section
assumes that there is no axial dispersion. In
order to estimate the error introduced by neg-
lecting this contribution to band broadening,
numerical calculations have been made, using
different values of the column Peclet number
(Pe=ulL/D,, where D, is axial dispersion coeffi-
cient [1]). The numerical solutions calculated
with the parabolic and the Langmuir isotherm
are shown in Fig. 5a.b, respectively. At large
values of Pe, hence high numbers of dispersive
stages, the analytical solution gives an excellent
approximation of the band profile, for both
isotherms.

4.4. Range of validity of the solution

Fig. 6 compares the dependence of the thick-
ness of the shock layer on the rate constant as

0.2[7 L T T ¥ T v v

0.161
014}

0.12¢

c/c0

0.081

0.06+

0.04r

0.021

5
{1- o0

c/c0

0.08

0.06

0.041

0.02

0 I

L Lo L -
3 35 4 45 5.5 ] 6.5 7

5
{1~ 10)r0

Fig. 5. Comparison between the analytical (solid line) and
numerical (chain-dotted line) solutions of the model obtained
for different values of axial dispersion, Pe =1,5000 (dotted
line): 2, 10000 (dashed line); 3, 30000 (chain-dotted line).
C,=10 mg/ml, r,=10 s and k=5.0s™". (a) The numerical
solution is obtained with the parabolic isotherm. (b) The
numerical solution is obtained with the Langmuir isotherm.

given by Eq. 16b (solid line) and the value of the
shock layer thickness derived from numerical
solutions of the kinetic model (symbols). The
calculations were performed using a value of the
loading factor of 0.7% and a parabolic isotherm,
for the sake of consistency. There is an excellent
agreement for values of the rate constant be-
tween 0.5 and 50 s~'. For low values of the rate
constant, the assumption made in the derivation
of Eq. 5a is no longer valid. The shock layer
predicted by Eq. 16b is too large.
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at

0 1
10f -
107 10" 10

Fig. 6. Comparison between values of the shock layer
thickness predicted by Eq. 16b (——) and values derived
from a numerical calculation of the band profiles (+).

5. Conclusions

Mass transfer in preparative elution chroma-
tography has been studied. The analytical solu-
tion of the band profile, a remained vexing
problem, has been given for a parabolic iso-
therm, also the expression of the shock layer
thickness of the band profile due to the mass
transfer resistance. The analytical results. are
compared with numerical simulations using
either a parabolic or Langmuir isotherm. The
validity of the model is discussed for different
value of the parameters.

The value of the dimensionless parameter R,
determines the degree of overloading of the
column. If R, is well below 1, the column is
operated under linear conditions. If R, is larger
than unity, the column is overloaded and the
band profiles are given by the equations of
nonlinear chromatography. From the results
displayed in the figures of the present paper, it is
clear that the shift takes place in a surprisingly
narrow range of values of R,. The exact nature
of this parameter and its fundamental basis
require further investigations. It is interesting to
note, however, that it is equal to the effective
loading factor [1,26,28], m given by

~Nrvig) 1

Under linear conditions, the contribution of
mass transfer resistance to the height equivalent
to a theoretical plate, the only contribution in
our model, is given by the van Deemter equation
27)

2k gu

H= m (18b)

Replacing N in Eq. 18a by L/H, with H as in
Eq. 18b gives

Lk R
m =-27k;,Lf=—2—k (18c)

The apparent loading factor has already been
used in empirical studies of column overloading.
It was implicit in the work of Haarhoff and van
der Linde [23] but was used first by De Jong et
al. [29] and by Knox and Pyper [30] to character-
ize the degree of column overloading and com-
pare the behavior of columns with different
characteristics. Later Eble et al. [31] showed that
there is a universal correlation between the value
of m and the ratio N/N, of the column efficien-
cies with the finite sample size, m, and with an
infinitely small sample size, at least provided that
the equilibrium isotherm is close to a Langmuir
isotherm.

As shown by Golshan-Shirazi and Guiochon
[1,26,28], the band profile of an actual column,
with a finite efficiency (due a finite value of the
apparent dispersion coefficient) becomes very
close to the profile predicted by the ideal model
(column efficiency infinite) if m is larger than 35.
We have shown here that the band profile
becomes very close to the profile predicted by
the linear model if R, =2m is lower than 1.

Thus, it seems that we have found a universal
parameter which permits a rapid decision regard-
ing the choice of the best model needed to
represent or calculate the chromatograms ob-
tained under any set of experimental conditions:
—1f m <0.5, the linear model;

-If 05<m<35, the equilibrium-dispersive
model or a lumped kinetic model, depending on
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the column efficiency (if N >2000 the equilib-
rium-dispersive model should be preferred) and
on the relative values of Pe and St. If Pe is large
and both N and St small, a lumped kinetic model
is needed.

— If m > 35, the ideal model.
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List of symbols

first numerical parameter of the isotherm

second numerical parameter of the iso-

therm

liquid phase concentration of the com-

ponent

maximum band concentration

component concentration in the injected

sample

phase ratio [F=(1-¢)/¢]

mobile phase flow-rate

mass transfer coefficient

column length

loading  factor

(LFg,)]

sample size (n = Cyt F,)

Pe Peclet number (Pe =ul/D_)

q solid phase concentration of the compo-

nent

equilibrium concentration given by the

isotherm equation

q. saturation capacity of the stationary phase
(q,=alb)

R, parameter characterizing the sample size

(szigzz(;%bkzlq&kp

M MY 0N o os

=

[n’/(Schs) = (C()[pu)/

X

S. cross-section area of the column available
to the liquid phase
St Stanton number (St = kL/u)

t time

t, injection duration

£ dimensionless time for the elution profile
(t, = 1/V2S8z2)

u mobile phase flow velocity

]

position in the column
Greek symbols

At shock layer thickness for 6

e total column porosity

# defines the fractions of the maximum con-
centration of the band used to measure the
shock layer thickness

new coordinate (7 =152 (z — 4 1)

=
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